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ABSTRACT 

We present a formula for the Fourier transforms of order statistics in 

R n showing that all these Fourier transforms are equal up to a constant 

multiple outside the coordinate planes in R n. 

For az ~ '" ~" an _> 0 and q > 0, denote by ~,q the n-dimensional 

Lorentz space wi th  the  norm II(xl . . . . .  Xn)l} -~ (al  (x~)qq - ' -  "q-an(x~)q) l/q, 

where ( x ~ , . . .  ,x~)  is the  non-increasing permuta t ion  of the numbers  

[Xll, ' ' '  , Ixnl" We use the  above ment ioned formula and the  Fourier trans- 

form criterion of isometric embeddabi l i ty  of Banach spaces into Lq [10] to 

prove tha t ,  for n > 3 and q _< 1, the  space s q is isometric to a subspace 

of Lq if and only if the  numbers  a l , . . .  , an form an ar i thmet ic  progression. 

n n Conse- For q > 1, all the  numbers  ai must  be equal so tha t  gw~a ---- s 

quently, the  Lorentz function space Lw,q(O, 1) is isometric to a subspace of 

Lq if and only if either 0 < q <: cc and the  weight w is a constant  function 

(so tha t  Lw,q = Lq), or q < 1 and w(t) is a decreasing linear function. 

Finally, we relate our results to the  theory of positive definite functions. 
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1. I n t r o d u c t i o n  

For a vector x -- (Xl , . . .  ,xn) E R n, denote by x* -- (x~, . . .  ,x*) the non- 

increasing permutation of the numbers [xl[,. �9 �9 [Xn [. We shall consider the order 

statistics x~ as functions of the variables Xl . . . .  , Xn. 

For al >_.. .  > an > 0 (not all zero) and q > 0, the expression [](xx,...  ,Xn)[[ = 

(al(x~)q + ' "  + an(x.)q) 1/q is the norm (or q-norm if q < 1) of an n-dimensional 

weighted Lorentz space which, as usual, we denote by g~,q. For an infinite de- 

creasing sequence w = (an) of positive weights, for which ~=~--1 an = co, the 

Lorentz sequence space g~,q is defined similarly. 

Let I denote the interval (0, 1) or the interval (0, or), and let w(t) be a positive 

decreasing function defined on I for which f l  w(t)dt = 1 and f o  w(t)dt = 0o 
(the latter condition only for I = (0, co)). For 0 < q < co, the Lorentz func- 

tion space L~,q(I) is the space of equivalence classes of real-valued measurable 

functions f on I for which the following norm (or q-norm if q < 1) 

,lfll~o,q = ( f l f*( t )qw(t)dt)  1/q 

is finite, where f* denotes the non-increasing rearrangement of [ft. For 0 < q < 

p < cx~, the classical Lorentz spaces Lp,q introduced in [15] correspond to the 

weights w(t) = (q/p)t q/p-1. 
Schiitt [19] proved that,  if 1 < q < 2, then Lw,q(O, 1) is isomorphic to a subspace 

of Lq if and only if it is a 2-concave Banach lattice. For the classical spaces 

Lp,q, it follows from Schiitt's result, from Carothers and Dilworth [4], and from 

M. Levy [12, 13], that Lp,q is isomorphic to a subspace of Lq if and only i fp  = q 

or 0 < q < p < 2. For further isomorphic results about the subspace structure of 

the Lp,q spaces we refer the reader to [3, 8, 12, 13]. 

The initial purpose of this work was to check the isometric version of the above 

results. We started with the question of whether any finite-dimensional Lorentz 

space ~ . q  is isometric to a subspace of Lq? Since we expected a negative answer 

for n > 3, we were going to use the following Fourier transform criterion from [10]: 

if q > 0, where q is not an even integer, and if the n-dimensional quasi-Banach 

space E is isometric to a subspace of Lq, then the distribution 

1 
" / ( ~ 1 , ' - ' ,  ~n- -1)  - -  (27r)n_lCq(l[xllq)^(~x, ... , ~n-1, 1) 

is a finite measure on R n-1 (here Cq = 2q+lTrl/2F((q + 1)/2)/F(-q/2), and the 

Fourier transform is considered in the sense of distributions). 
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Calculating the Fourier transform of the norm of the space ~ ,q  we ran into 

a surprising fact: for every continuous function f on R with a power growth at 

infinity, all the order statistics ~-~-~=1 akf(x*k) have equal Fourier transforms up to 

a constant multiple outside the coordinate planes in R n . The same result is true 

if we consider non-increasing permutations of Xl . . . .  , xn instead of Ix1[, . . . ,  [xn [. 

This fact has, however, a simple explanation which we present in Section 2. 

In Section 3 we apply the formula for the Fourier transform of order statistics 

to the Lorentz sequence spaces. We prove that,  for q < 1, the space g:,q is 

isometric to a subspace of Lq if and only if the numbers a l , . . . , a n  form an 

arithmetic progression. For q > 1, all the numbers ai must be equal so that 

e=,q = q .  
In Section 4 we deduce from the finite-dimensional results that there are non- 

trivial isometric embeddings of the function space space Lw,q(I) into Lq if and 

only if I = (0, 1), q < 1, and w(t) is a decreasing linear function. As a conse- 

quence, we obtain an interesting family of rearrangement-invariant renormings 

of L1 which are at the same time isometric to subspaces of L1. 

In Section 5 we show how our results are related to a problem of I. J. Schoenberg 

[18] about positive definite functions. 

Finally, we wish to mention that  the isometries of Lp,1 into itself were de- 

termined by Carothers and Turett  [6], and that  recently Carothers, Haydon, 

and Pei-Kee Lin [7] determined the isometries of Lw,q into itself. The methods 

required to prove these results are quite different from those used in this paper. 

2. T h e  Four i er  t r a n s f o r m  o f  o r d e r  s t a t i s t i c s  

We start with the following elementary fact. 

LEMMA 1: For any a l , a 2 , . . . , a n  E P~, any function f on R, and every x = 

(Xl , . . . ,  X n )  E R n , w e  have 

(1) 

alf( 7) +. . .  + a,J(x:) 

= E E ( -1) j -1  an-k+j 
k=l \ j = l  1 

E f (max([x i l [ ' " " [x i~[ ) ) "  

where the latter sum is taken over all choices of I <_ i I <: " ' "  < i k  ~_ n. 

Proof'. We argue by induction. Assume (without loss of generality) that [x,] _> 

[xk[ for k = 2 , . . . , n ,  and suppose that  our statement is true for the numbers 

Q <...<i~ 
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a 2 , . . . , a n  and x 2 , . . . , x n .  If we add al and xl ,  then the left-hand side of (1) 

changes by alf(Ixll). The additional summands in the right-hand side are as 

follows: 

m--1 
am(~- -~(_ l ) j (n -~ .  + 3 ) (  n - i  ) )  

n - m + j  f ( Ixl[) '  m =  1 , . . . , n .  
j=0 

For every m > 2, the sum in parentheses is equal to 

m--1 
(-?~ -- '- '~.I ~ (-t)j m -  1)m-1 

j=0 j = (-n--- m ~  ( ( -1 )  + = 0. 

So the only non-zero additional summand in the right-hand side is alf(lxll), 

which completes the proof. | 

As usual, we denote by S ( E  ~ ) the space of rapidly decreasing infinitely differ- 

entiable functions on R n , and by S ' (R n ) the space of tempered distributions. For 

an open subset 12 of R n, 79(12) denotes the collection of functions in S ( ~  ~) with 

compact supports in 12. We say that two distributions f ,  g E S ' (R n) are equa l  

on 12 if (f,  r = (g, r for every r E 79(12). 

The Fourier transform of any distribution in S'(]~ '~) of the form g(xi l , . . . ,  x~ ), 

where k < n, is equal to zero outside the coordinate planes in E ~. Using this fact 

and Lemma 1 we immediately get the following result. 

PROPOSITION 1: For any continuous function f on R with power growth at 

infinity (i.e., for some A > 0, p > 0, [f(x)l _< A(1 + Ix[P), for all x e R) and any 

numbers al, a 2 , . . . ,  a,~ E ]~ the Fourier transforms of the distributions ~ ak f ( x*k ) 
and cf(max([xl[,. . . ,  [x~[)), where c = E~=l ( -X)k-x(~-~)ak  are equal outside 

the coordinate planes in R n . 

Lemma i also shows that  the Fourier transform of order statistics can easily be 

calculated if we have a formula for the Fourier transform of the distributions of the 

form f ( ma x( [ x l [ , . . . ,  ]x,~[)). Such a formula was obtained in [11] in connection 

with some problems concerning the characterization of measures by potentials. 

We repeat this calculation here because the formula is crucial for our further 

considerations. 

Denote by G the set of vectors ~ = (~y, . . . ,~n)  E R ~ such that ~k r 0 for 

1 _< k _< n and (6,~) ~ 0 for every vector 6 = (61, . . . ,~n) ,  with r = -t-1 for 

1 < k < n (here (~, ~) denotes the usual scalar product in R ~). 
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PROPOSITION 2: Let  f be an even continuous function on ]R n with power  growth 

at infinity and for which the distribution u = ( f ( t ) ( sgn( t ) ) '~ - l )  A is a continuous 

function on R \ {0}. Then, for every ~ �9 G, we have 

f(max(lx,I,..., Ix~l))~(~) 
(2) i '~-1 

- 2~1 . . . . .  5n ~ 61". . ."  6n(61~1 + ' ' "  + 5n~n)U(5151 + ' ' "  + 6n~n), 
6 

where the sum is taken over all changes o f  signs. 

Proo~ Let r �9 S(R '~) be a function with a compact support outside the coordi- 

nate planes. Then there exists a function F �9 S(]R ~) such that O ' ~ F / O x l . . .  Ox ,  

= r To see this, note that ~/~(x) = r  belongs to S(Rn), and hence 

�9 s ( R  ~). Put F = in~; and now use the connection b~tween the Fourier 

transform and differentiation: 

O'~F/Oxl . . .  Oxn = i n o n ~ / O X l  " ' "  OXn  = ( X l  " ' "  Xn '*  ) A • ~ .  

Denote by Bt the ball {x C •n: Llxll~ < t}. Recall that, for every r �9 S(X n) 

and for every non-zero ~ �9 R n, the function t ---* r (t �9 ~) is the Fourier 

transform of the function y ~ f(~,x)=y r  (y �9 R): this is the well-known 

connection between the Fourier transform and the Radon transform (see e.g. [9]). 

Now we can start the calculation: 

( f  (max(Ix11 . . . . .  lx" ]))A, ~b) = (f(max(lxl  ] . . . . .  ]x:,-t I)), ~) 

=fR~ f(max(Ixll ..... Ixnl))~(x) dx 

s 

/o ) = f ( t )  x)  dx  dt 
t t 

i 

fo (; ) = f ( t )  .. x )  dx  dt 
t t 

= / ( t ) ~ 6 . . . . . ~ , ( F ( e l t , . . . , ~ t ) ) ~ d t ,  
5 

which equals 

. . . . .  

OF OF ) 
~(6~-g~x ~ + . - .  + 5n-g~x )(6~t, . .  . ,6~t) dr. 



416 S . J .  DILWORTH AND A. L. KOLDOBSKY Isr. J. Math. 

The function (fB, r is even if n is an odd integer and odd if n is even. 

Therefore the integral in (3) is equal to 

(4/ + o oj , 
& 

Since OF/Oxk = i n - l ( x k r  .. .Xn)) ^ for each k, we can use the prop- 

erty of the Radon transform which was mentioned above to rewrite (4) as the 

following: 

i~ -~ / , , , , , , , x "  " 8 j z j r  dx j t t ) t sgn t t ) )n -1 ,  Z_ 81 . . . . .& ,  - -  . . . .  
2 \ & ,z)=y X l ' ' ' X n  

which equals 

2 (/(t)(sgn(t)) ~ 8 . . . . .  
& , z ) = y  X l  " " " X n  

The distribution u = ( f ( t ) ( sgn( t ) )n -1 )  ^ is a continuous function on R \  {0}, 

and so, for every r E S(R ")  with compact support in G, we have 

(5) (S(llxllo~) ̂ , r = --7-- ~_, 81"..." 8n dx yu(y) dy. 
S , x ) = y  X l  " " " X n  

The latter integral converges absolutely because all the functions 

Y ~ f ( ~  r dx ( y e R )  
,x)=y Xl " " " X n  

belong to S(R) and have compact supports in R \ {0}. By the Fubini theorem, 

the integral in the right-hand side of (5) is equal to 

2 , 81"..." 8,~ 

which completes the proof. 

81X 1 - ~  " ' "  -~- 8 n X n  

X 1 �9 . . X n 
u(6zl + .-. +8.xn)) r 

Putt ing f ( t )  = Itl q and n = 3 in (2) we get the following fact which was used 

in [10] to prove that the space ~3 is not isometric to a subspace of Lq. 
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COROLLARY 1: For every q > 0 which is not an even integer, the Fourier 

transform of the function maxq (Ixlt, Ix21, lx31) is a continuous homogeneous sign- 
changing function on the set G C R 3. 

Proof: For every q > 0 which is not an even integer, we have ([t[q)^(~) = 

Cq[~[ - l -q ,  for all non-zero ( E R. Apply  the formula  (2) wi th  f ( t )  = It[ q and 

n = 3 :  

(maxq(Ix~l,  Ixzh [xa[)) A(~I, ~2, ~31" ---- 2~1~2~3--Cq (1~1 -4- ~2 -{- ~31 -q  sgn(~l -t- (2 -4- ~3) 

- [~1 + ~2 - ~3[ -q  sgn(~l + ~2 - ~3) 

- -  [~1 - -  ~2 -~- ~3[ - q  sgn(~l - -  ~2 + ~3) 

+ I~1 - ~2 - ~3t -q s g n ( 6  - ~2 - ~3)) 

for every ~ = (~1, ~2, ~3) ~ G. Clearly, the Fourier t r ans form has opposi te  signs 

at  the points  ~1 = 3, ~2 = ~3 = 1 and ~1 = 3, ~2 = ~3 = 2. II 

3. I s o m e t r i c  e m b e d d i n g  o f  L o r e n t z  s e q u e n c e  s p a c e s  i n t o  Lq 

We are going to use the Fourier t rans form criterion ment ioned in the In t roduc t ion  

to characterize the finite- and infinite-dimensional Lorentz sequence spaces which 

are isometric  to subspaces of Lq. We formula ted  this cri terion in the In t roduc t ion  

as a necessary condit ion for the existence of an isometr ic  embedding.  As a m a t t e r  

of fact, one can also use this criterion as a sufficient condition, a l though there 

may  be some complicat ions (for details, see [10, R e m a r k  1]). For Banach  spaces 

for which the dis t r ibut ion 7 is a finite measure  one obtains  the following Levy 
representation of the norm (named after Paul  Levy):  

tlxtl q = [ I z 16  + . . .  + x , - 1 ~ , - 1  + x ,I  q d ~ ( 6 , . . . ,  ~n-1) .  
JR n-1 

I t  is easy to see [10] tha t  the Levy representa t ion  with  a finite measure  7 implies 

the existence of an isometric  embedding  of the space into Lq, and we shall use 

this fact in wha t  follows. In  par t icular ,  we shall  use the Levy representa t ion  for 

the norm of the space g~  [10]: for each q < 1 and for all x, y E R, 

(6) maxq(]xl, M)=~--~rCOt(~ ) [ x + y ~ l q l ~ - l l - q - l ~ + l l - q d ~ .  

Note t ha t  
7(~) = ]~ -- 1]-q -- ]~ + l l - q  d~ 
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is a finite measure on N, which was calculated (using (2) above) in [10] as the 

Fourier t ransform of the function maxq(Ixl, lY[). If  q > 1 then the function 3' 

is still positive, but  it is not  integrable around 1 and - 1 .  Thus,  the space e 2 

is isometric to a subspace of Lq if and only i f q  _< 1. For q = 1, the Levy 

representat ion is given by the well-known and part icular ly simple 

(7)  max(Ix[, ]yD = (1/2)([x + y[ + Ix - yD- 

Now we are ready to apply the Fourier t ransform criterion to Lorentz spaces. 

THEOREM 1: 

(a) Let 0 < q < 1. I f  n >_ 2, then the space ~ ,q  is isometric to a subspace of 

Lq i f  and only i f  

(8)  a l  - a 2  - -  a2  - a 3  = " ' - -  a n - l - a n .  

(In particular, the space s is isometric to a subspace of Lq t'or every 

choice of al, a2.) 

(b) Let q > 1 and n >_ 2. Then the space s is isometric to a subspace of Lq 

i f  and only ira1 . . . . .  an (so that s = s ). 

Proof." Suppose tha t  n _> 2 and tha t  the space s is isometric to a subspace of 

Lq. Let us prove (8) by induction. The hyperplane in s defined by x~ -- 0 is 

isometric to the (n - 1)-dimensional Lorentz space with the weights a l , .  �9 a s -1 .  

By the induct ion hypothesis,  a l  - a2 = a2 - a3 . . . . .  an -2  - a ~ - i  = a.  Denote  

an-1  - an by/3.  

For every k _> 3, we have 

k 

(9) z(  ) a -k+j = ( - 1 ) k ( / 3  - 
1 

j = l  

To see this, let an-k+1 = u; then a,~-k+j = u - (j - 1)a for j = 1 , . . . ,  k - 1, and 

an = u - (k - 2 )a  - / 3 .  So the sum in (9) is equal to 

k k -  k _ 
(1) o 

j----1 \ J  j = l  

~-~k ( l ~ J _ l { k - l ~  and it suffices to note tha t  z_.,j=l~- J ~j-lJ = 0 and ~-2~=l (-1)J (j _ 1)(j_0k-1 

~ 0 .  
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Apply (1) with f ( t )  = I t t  q and use (9) to get the following expression for the 
n . norm of the space e~,q. 

Ilxll ~ =al(X*l)  ~ + . . .  + an(x : )q  

=an(lXll  q + " "  + Ix~l q) + ~ ~--~ maxq(lx~l, Ixjl) 
(10) ~<J 

n 

+ ( Z - ~ ) ~ - - ~ ( - 1 )  k ~ maxq(Ixi l l , . . . , Ix~l) .  
k = 3  i l  <...<i~ 

Consider the three-dimensional subspace of g~,q consisting of the vectors x E 

R" for which x3 . . . . .  x~. It follows from (10) that this subspace is isometric 

to a space whose norm can be represented in the form 

II(x~,x2,x3)ll  ~ = (Z - ,~) ~ - ~ ( - 1 )  k - maxq([xlh Ix21, Ix3l) + g ( x l , x 2 , x 3 ) ,  
k = 3  

where g is a linear combination of the functions Ix, I q and max~(Ixd, Ix~l) and, 

therefore, the Fourier transform of g is supported in the coordinate planes in R s . 

Note that  v ' "  r l~k[n-:)  - 1 ,  and so g..~k~3k-- ! \ k - - 2 ]  = 

II (x l ,xu,xs) l l  ~ = (e~ - ~) maxq(IXll ,  Ix21, Ixsl) + g ( x l , x 2 , x s ) .  

This three-dimensional space will be isometric to a subspace of Lq. By the Fourier 

transform criterion discussed above, the distribution 

1 
~(r r - ((2~)2cq)(ll(xl, x2, xs)llq)^(r r 

will be a finite measure in R 2 (and, in particular, it must be non-negative). On 

the other hand, by Corollary 1, the Fourier transform of maxq(Ixl I, Ix21, I~sl) is a 

continuous homogeneous function which changes its sign on an open set G c R 3 , 

and so 7 cannot be non-negative if a r f~. Thus, a = ~, which concludes the 

proof of (8). 

Conversely, suppose that  (8) is satisfied. Then, for k _> 3, all of the coefficients 
k "--1 k--1 ~'j__.l(-1) 3 ( j _0an_k+j  in (1) are equal to ze ro ,  and the formula (1) turns 

into 

(11) Ilxtl q = al (x~)q  + . . .  + an(x~)q 

= an(Ix l l  q + ' "  + Ix,~l q) + (a,~-i -- an)~--~ maxq(Ix~l, Ixjl). 
i < j  
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If q < 1, then the norm admits the Levy representation with a finite measure 

which is the sum of the measures appearing in (6) and of point-masses an at the 

points ( 1 , 0 , . . . ,  0 ) , . . . ,  ( 0 , . . . ,  0, 1). So the space l~,q is isometric to a subspace 

of Lq. In the case q = 1 one easily gets the Levy representation using (7). This 

finishes the proof of part (a). 

If q > 1, and if q is not an even integer, then by the remark at the beginning of 

Section 3, the Fourier transforms of the functions maxq(Ix~ I, Ixjl ) are not finite 

measures. So the space g~,q can be isometric to a subspace of Lq only if all 

these functions are missing in (11), which happens if and only if a,~-i = an. In 

conjunction with (8) this gives al . . . . .  an, and we have proved part (b). (The 

case where q is an even integer will be dealt with below.) | 

The Fourier transform criterion does not work in the case where q is an even 

integer. However, statement (b) of Theorem 1 remains true in this case. The 

following simple fact shows that,  for every q > 1, the space g~,q is smooth only 

if all the numbers a~ are equal. (Thus, for q > 1, the space g~,q is isometric to a 

subspace of Lq if and only if g~,q = g~.) 

LEMMA 2: For every q > 1, the space ~ , q  is smooth  i f  and only i f  al . . . . .  as .  

Proof'. Consider the two-dimensional subspace of g~,q consisting of the vectors 

x -- (X l , . . . , x~ )  for which Xl . . . . . .  xn-1. This subspace is isometric to the 

two-dimensional Banach space whose norm is given by 

f (al + ' "  +an-1) lx l  q +anlYl q for Ixl _> lyl, 
II(x,y)l l  ~ =  

(a~ + + an)lxl q + adyl q for Ixl _< lYl. 

L e t  a --  a l  + " ' "  + a n - I ,  b = an, c = a2 + " ' "  + an, and  d = a l .  T h e  curves  

alxl q + blYl q = 1 and cixlq + dlyl q = 1 intersect at the point whose x-coordinate 

equals (~_~_~)l/q. (Note that a + b = c + d.) If the space is smooth then the 

derivatives of the functions 

( 1  - axq~ 1/q ( 1  - cxq~ 1/q 
Y= \ b ] and Y =  \ d ] 

at the point 

must agree. This gives 

1 

b b d ' 
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and, therefore, a/b = c/d. This means that  al  = an, and we are done. | 

Because a decreasing arithmetic progression of positive numbers is either con- 

stant or finite, we immediately deduce from Theorem 1 the following corollary. 

COROLLARY 2: Let 0 < q < co. The Lorentz sequence space e~,q is isometric to 

a subspace of  Lq i f  and only i f  w is a constant sequence. 

A GEOMETRICAL ARGUMENT. For q --- 1, we should like to sketch a simple 

geometrical proof of Theorem 1. First we prove by induction that  ~ , 1  is isometric 

to a subspace of L1 only if the weights ak satisfy (8). Let E be a Lorentz space of 

dimension n + 1 with weights a l , . . . ,  an+l.  If E is isometric to a subspace of L1 

then (8) holds by hypothesis, and so it suffices to prove that  a n - 1 - a n  = a n - a n + l  

to complete the induction. In particular, we may assume that  a n - l ,  an and an+l 

are not all equal. Let B* denote the unit ball of E*. Since the unit ball of E 

is a polytope, and since E is isometric to a subspace of L1, it follows (see e.g. 

[1]) that  B* is a z o n o t o p e  (that is, a Minkowski sum of line segments). By [1, 

Theorem 3.3], all of the two-dimensional faces of B* are centrally symmetric.  It  

is easily seen that  the extreme points of B* are all the sign-changed permutat ions 

of the vector a = (al,a2 . . . . .  an+l).  In particular, one of the two-dimensional 

faces of B* has as its vertices all of the vectors obtained by permuting the last 

three coordinates of a. If an-1 = an or if an = an+l, then this face is triangular, 

which contradicts the central symmetry  requirement. If an-1 > an > an+i, then 

the face is hexagonal, and the symmetry  condition forces an-1 - an = an - an+l 

as required. Thus (8) is a necessary condition. To show that  (8) is also sufficient, 

one can check that  if (8) is satisfied then B* has four kinds of two-dimensional 

faces: two classes of quadrilateral faces, one class of octagonal faces, and one class 

of hexagonal faces like the face described above. The first three kinds of faces are 

automatically centrally symmetric without any condition on the weights, while 

(8) guarantees that  the hexagonal faces are also centrally symmetric.  So, by [1, 

Theorem 3.3] once again, if (8) is satisfied, then B* is a zonotope, and hence E 

is isometric to a subspace of L1. | 

4. Isometric  embedding  of  Lorentz funct ion spaces into Lq 

For 0 _< a _< 2, let w~(t) = 1 + a / 2  - at. Observe that  the w~'s are precisely the 

decreasing linear weights on [0, 1] which satisfy f l  o w(t) dt = 1. 
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THEOREM 2: 

(a) Let 0 < q < 1. Then L~,q(O, 1) is isometric to a subspace of Lq if and only 

if  w = w~ for some c~ �9 [0, 2]. 

(b) Let q > 1. Then L,o,q(0, 1) is isometric to a subspace of Lq if and only i f  

w = wo (so that L~,q = Lq). 

Proo~ (a) First we prove necessity. For n_> 1 and for 1 _< k_< n, let en,k = 

X[(k-1)/,,,k/n), and let Xn be the linear span of the e~,k's in Lw,q. Clearly, X,~ is 

a Lorentz space with weights an,k = f(~/~-I)/~ w(t)dt .  By isometric to Theorem 

1, the sequence la~,k)'~=l forms a decreasing arithmetic progression for each n. 

This clearly forces w to be a decreasing linear function, so that w = w~ for some 

�9 [0, 2]. For sufficiency, observe that if w = w~, then by Theorem I each X,~ 

is isometric to a subspace of Lq. Since ~ > 1  Xn is dense in L~,q, it follows from 

the fact that the Lq spaces are stable under the operation of taking ultrapowers 

that L~,q is isometric to a subspace of Lq (e.g. [14, pp. 121-122]). 

(b) In this case, by Theorem 1, <an,kl'~=l is a constant sequence for each n, 

which forces w to be constant. Sufficiency is obvious in this case. | 

For the function spaces L~,q(O, oo) the situation is different. Arguing as above 

and as in Corollary 2 one immediately obtains the following corollary. 

COROLLARY 3: Let 0 < q < oo. Then L~o,q(O, ~)  is isometric to a subspace of 

Lq if and only if  w(t) is a constant function. 

Remarks: 1. Clearly, the L ~ , I  spaces are all isomorphic to L1 (in fact, the 

Lw~,l and L1 norms are equivalent). On the other hand, the proof of a result 

of Carothers, Dilworth and Trautman [5, Theorem 2.3] shows that there is no 

isometry from L ~ , I  onto L ~ , I  if 0 _< a </3 _< 2. 

2. For a > 0, there is no isometry from L1 into L,~,I .  In fact, by [5, 

Lemma 2.1] there is not even an isometry from s into L ~ , I .  

3. Observe that L~2,1 has a certain universality property among the L ~ , I  

spaces. To be precise, if 0 < a < 2, then Lw~,l is isometric by a dilation to 

the one-complemented sublattice of Lw2,1 which consists of all functions that 

are supported in the interval [0 ,2a / (a  + 2)]. Moreover, L,~2,1 contains a con- 

tinuum of isometrically distinct one-complemented (by conditional expectation) 

two-dimensional subspaces: namely, the Lorentz spaces corresponding to al = 1 

and a2 6 [1/3, 1) (whose unit balls are octagonal). This is in contrast with L1, 
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which has, for each positive integer n, a unique one-complemented n-dimensional 

subspace up to isometry, namely e~. 

4. Let us recall some of what is known about the geometry of the L~,I spaces. 

For every strictly decreasing w, the extreme points of the unit ball of L~,I are all 

the functions of the form eXA/(f~ AI w(t)  dr), where A is any subset of [0, 1] with 

positive Lebesgue measure IAI, and c is any +l-valued measurable function ([5, 

Prop. 2.2]). Moreover, while L~,I is not strictly convex, it is nevertheless true 

that  every element on the unit sphere of L~,I is the barycenter of a unique Borel 

probability measure supported on the extreme points of the ball ([5, Theorem 

3.5]). Finally, Sedaev [20] proved that if w is strictly decreasing then L~,I has 

the Kadec-Klee property, i.e., if fn ~ f weakly and IlfnHw,1 "~ I[fllw,1 then 

I l l -  fnll~,l ~ 0. It is well-known, on the other hand, that L1 does not have this 

property. | 

5. P o s i t i v e  de f in i t e  f u n c t i o n s  

We would like to mention how the problems considered in this paper are con- 

nected to positive definite functions. The question we wish to discuss is as 

follows: for which q E (0,2] and for which al , . . . ,a ,~  >_ 0 is the function 

exp( -a l (x~)  q . . . . .  a,~(x*) q) positive definite on R~? (Note that, for every 

q > 2, this function is not positive definite because its one-dimensional restric- 

tion exp(-Itl  q) (t E R) is not positive definite for these values of q.) 

If al = 1 and a2 . . . . .  an = 0 we arrive at the following question: for which 

q is the function exp(-  maxq(Ixll , . . .  , Ix,~l)) positive definite? This is exactly the 

problem posed in 1938 by I. J. Schoenberg [18] and solved by J. Misiewicz [16] in 

1989. The answer is that, for every n _> 3 and q > 0, the function is not positive 

definite, and, for n = 2, the function is positive definite if and only if q < 1. The 

problems of Schoenberg's type are important in the study of isotropic and stable 

random vectors (for details, see [10]). 

The connection between positive definite functions and isometric embeddings 

into Lq was discovered in 1966 by J. Bretagnolle, D. Dacunha-Castelle and J. L. 

Krivine [2]: for q e (0, 2], a Sanach space (E, It" II) is isometric to a subspace of 

Lq if and only if the function exp(-Ilxll q) is positive definite. 

Combining this result with Theorem 1 we get an answer to the question raised 

above. 
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PROPOSITION 3: 

i f  and only  if: 

(i) 
(ii) 

The function e x p ( - a l ( x ~ ) q  . . . . .  an(x*)  q) is posi t ive  definite 

q E (1, 2] and  al . . . . .  a,~, or 

q < 1 and the numbers  ak form a non-increasing ar i thmet ic  progression. 

(This  includes the case n = 2 where the progression consists o f  two numbers  

only.) 

Since we no longer assume in the formulat ion of Propos i t ion  3 tha t  a l  > .. �9 > 

an (which was necessary in the definition of the Lorentz spaces) we have to make  

a r emark  concerning the proof. Formally, wi thout  the condit ion a l  > " "  > an 

the funct ion u(x)  = (al(x~) q + . . .  A- an(xn)q) l /q  may  not be a norm and so we 

cannot  apply  the result f rom [2] directly. We can, however, use a general izat ion 

of this result  f rom [17, p. 290] s ta t ing  tha t ,  for any continuous one-homogeneous  

non-negat ive  funct ion u on R '~ which vanishes only at  the origin, if e x p ( - u ( x )  q) 

is posi t ive definite, then u is the norm (or q-norm if q < 1) of a subspace of Lq. 

Besides, the proof  of Theo rem 1 does not depend on the condit ion a l  > " .  > a,~, 

and, in fact, in the proof  of Theorem 1 this condit ion follows from the existence 

of an isometr ic  embedding  into Lq. 
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